# Cheap and near exact calculations with large active spaces. 

New applications for the "SHCl" algorithm

Bastien Mussard<br>bastien.mussard@colorado.edu

Sandeep Sharma
University of Colorado at Boulder
https://mussard.github.io/


Model systems for catalysis


Acenes


Lanthanide complexes


Transition metal oxydes

The systems of interest in biological processes, in energy conversion, in energy storage, .... are challenging because of static and dynamical correlation.

The wavefunction is written with determinants.

In multireference methods, one chooses a subset of orbitals and a subset of electrons, defining an active space, hopefully treated exactly:

$$
|\Psi\rangle=\sum_{D_{n} \in \text { active }} c_{n}\left|D_{n}\right\rangle
$$


$\longrightarrow$ For any given method, the size of the tractable active space is crucial.

For more challenging systems, it is hard to perform exact calculations for interesting active spaces: approximate methods are needed.

$$
\operatorname{cost}=\binom{\# \text { orb }}{\# \text { elec } / 2}^{2}
$$




## Selected CI + Perturbation : Two stages

- Variational stage: calculate $E_{0}$ in a space of important det. $\longrightarrow$ Q1) How to quickly select "important" det.?
- Perturbational stage: calculate $E_{2}$ $\longrightarrow$ Q2) How to avoid the memory bottleneck?

CIPSI (CI Perturbatively Selected Iteratively)
The original idea comes from here.
CIPSI is used a lot notably together with FN-QMC.

SHCI (Semistochastic Heat-bath CI)
An alternative algorithm based on the same basic idea.

SHCI is used in an SCF context

[Holmes et. al. JCTC (2016)] [Sharma et. al. JCTC (2017)]
[Mussard et. al. JCTC (2017)] and includes relativistic effects.

And many, many, many other implementations

Adaptative Cl<br>Iterative Cl<br>(energy-based for QMC)<br>SCI/MCCI

[Evangelista JCP (2014)]
[Liu JCTC (2016)]
[Per JCP (2017)]
[Ohtsuka JCP (2017)]
$\longrightarrow$ Iteratively find important determinants

## by connections to

## a current space.



At a given iteration the variational space is augmented by a subset of the connected determinants.


This involves a parameter to add a very small subset of the connected determinant.

SHCl uses a simple criterion that allows to easily implement a fast algorithm.

$$
|1\rangle=\frac{1}{\hat{H}_{0}-E_{0}} \hat{V}|0\rangle \quad{ }_{c}^{v \hat{H}_{0}}
$$


too memory intensive!
$e^{2} v^{2} N_{\nu}$
$\approx 20^{2} 100^{2} 10^{7}$
$\approx 10^{12}$

## Truncated summation

$$
E_{2}[\text { trunc. }]=\sum_{D_{a} \in \mathcal{C}(\epsilon)} \frac{1}{E_{a}-E_{0}}\left(\sum_{D_{i} \in \mathcal{V}}^{(\epsilon)} H_{a i} c_{i}\right)^{2}
$$

The size of the sum is very sensitive to the truncation threshold

## Stochastic expression



For the same reason: this lends itself to a stochastic treatment!

$$
\left\langle E_{2}\right\rangle=\langle 0| \hat{V} \frac{1}{\hat{H}_{0}-E_{0}} \hat{V}|0\rangle
$$

## Semistochastic implementation

$$
\overline{E_{2}[\text { trunc. }]+\left(\left\langle E_{2}\right\rangle-\left\langle E_{2}[\text { trunc. }]\right\rangle\right)}
$$

$\mathrm{SHCl}=E_{0}+E_{2}$

Variational Semistocha. PT


One-parameter algorithm to obtain the CASCI energy with a large active space.

This parameter simply depends on the resources available for a calculation.

We have a built-it method to automatically extrapolate to the exact result.

## Butadiene

(22e,82o)


| $\epsilon_{1}$ | $N_{\text {var }}$ | vHCl | SHCl |
| :--- | :---: | :---: | :---: |
| $3.10^{-5}$ | $1.10^{7}$ | -0.5411 | $-0.5534(1)$ |
| $2.10^{-5}$ | $2.10^{7}$ | -0.5441 | $-0.5540(1)$ |
| $1.10^{-5}$ | $6.10^{7}$ | -0.5481 | $-0.5550(1)$ |
| $\operatorname{SHCl}\left(\epsilon_{1} \rightarrow 0\right)$ | $-0.5574(8)$ |  |  |
| DMRG $(\mathrm{M}=6000)$ | -0.5572 |  |  |

## Are those algorithms "active space choosers"?

No! This is to get the near-exact CASCI energy for large active spaces.
One still needs to provide an active space.
The input is of less crucial importance, since the AS can be large.

## How big an active space can we reach?

First row dimers
(14e, 108o) Butadiene
(22e, 82o)
Halogens
(17e, 121o) oxo-Mn(Salen)
Coinage metals (19e, 172o) Neptunium dioxyde
(28e, 22o)
(17e, 143o)
(25e, 150o)


## How fast are those algorithms?

The time to convergence is
-from a few minutes on single core $\left[\mathrm{Cr}_{2}(24 \mathrm{e}, 42 \mathrm{o})\right]$, -to 20 min on a node -to 2 days on 8 nodes
[ $\mathrm{Cr}_{2}$ (12e, 190o)],
[Cr2 (28e, 288o)].

Most parts of the algorithms easily parallelizes.

## Self-consistent field feature

Going from near-exact CASCI with large active spaces to near-exact CASSCF with large active spaces.
[Smith,BM,Holmes,Sharma JCTC (2017)]


## Spin-orbit coupling

Variational treatment of relativistic effects with large active spaces.
[BM,Sharma JCTC (2017)]


Dynamical correlation
Tackle static and dynamical correlation with an internally contracted MRPT.
[BM,Sharma (in prep.)]


## Orbital Optimization

$E_{\mathrm{SHCl}}=E_{0}+E_{2}$ is not variational wrt. to its parameters:

$$
\partial E \neq\langle 0| \partial \hat{H}_{0}|0\rangle
$$

## We use the Lagrangian formalism

to get the analytical gradient:

$$
\begin{aligned}
\partial E & =\langle 0| \partial \hat{H}_{0}|0\rangle \\
& +(\text { lagrangian terms })
\end{aligned}
$$



Note: the equations to derive the gradient wrt the orbital parametrization are similar to the equations of the gradient wrt the nuclear coordinates $(~ \rightarrow$ geometry optimizations,...)
[Smith,BM,Sharma (in prep.)]

## (A) Large active space CASSCF

## Effect of the orbitals

Fe(Porphyrin)

Model of the active site of the heme group

|  | $\epsilon_{1}$ | $E_{\text {SHCISCF }}$ | $E_{\text {SHCI }}$ |
| :--- | :---: | :---: | :---: |
| SHCISCF orbitals | $5.10^{-5}$ | -2245.0178 | -2245.0314 |
| vHCISCF orbitals | $5.10^{-5}$ | -2245.0121 | -2245.0313 |
| vHCISCF orbitals | $1.10^{-4}$ | -2244.9980 | -2245.0314 |


$\longrightarrow$ A quick vHCISCF calculation is enough to obtain converged active space orbitals.

## (A) Large active space CASSCF

## Large active spaces

## Fe(Porphyrin)

|  | $E_{\text {SHCI }}$ | $E_{\text {ex }}$ |
| :---: | :---: | :---: |
| cc-pVDZ (32e,29o) |  |  |
| ${ }^{5} A_{\mathrm{g}}$ | -0.0314(5) | 16.7 |
| ${ }^{3} B_{1 g}$ | -0.0049(6) |  |
| cc-pVTZ (32e,29o) |  |  |
| ${ }^{5} A_{\mathrm{g}}$ | -0.2549(5) | 16.4 |
| ${ }^{3} B_{1 g}$ | -0.2288(6) |  |
| cc-pVDZ (44e,44o) |  |  |
| ${ }^{5} A_{\mathrm{g}}$ | -0.1964(9) | -2.0 |
| ${ }^{3} B_{1 g}$ | -0.1995(6) |  |

$\longrightarrow$ Need to include

## Fe-N bonding and anti-bonding and a second $d$ shell

Model of the active site of the heme group

## Relativistic effects

- important to capture phosphorescence, magnetism, hyperfine constant, g-tensors,. . .
- comparable to electron correlation in heavy atoms.

Challenge
$\hat{H}=\hat{H}_{\mathrm{SR}}+\hat{H}_{\mathrm{SOC}}$
where $\left\langle n_{\alpha} n_{\beta}\right| \hat{H}_{\text {Soc }}\left|n_{\alpha}^{\prime} n_{\beta}^{\prime}\right\rangle \neq 0$
State of the art methods use a 2 -step process with QDPT:

1) obtain $|1\rangle, \ldots,|N\rangle$ of $\hat{H}_{S R}$
2) diagonalize $\langle i| \hat{H}_{\text {SR }}+\hat{H}_{\text {SOC }}|j\rangle$


| $\underline{\text { Challenge }}$ |
| :--- |
| $\hat{H}=\hat{H}_{\mathrm{SR}}+\hat{H}_{\mathrm{SOC}}$ |
| where $\left\langle n_{\alpha} n_{\beta}\right\| \hat{H}_{\mathrm{SOC}}\left\|n_{\alpha}^{\prime} n_{\beta}^{\prime}\right\rangle \neq 0$ |
| State of the art methods |
| use a 2-step process with QDPT: |
| 1) obtain $\|1\rangle, \ldots,\|N\rangle$ of $\hat{H}_{\text {SR }}$ |
| 2) diagonalize $\langle i\| \hat{H}_{\mathrm{SR}}+\hat{H}_{\mathrm{SOC}}\|j\rangle$ |

## $\longrightarrow$ In our approach, SHCI treats relativistic effects with large active spaces in a one-step procedure on an equal footing with correlation.

SHCI retains its ability to discard large parts of low importance in the increased-size Hilbert space.

## Coinage metals



|  | ${ }^{2} \mathrm{D}_{3 / 2}$ |
| :---: | :---: |
| $s^{2} d^{9} \frac{2}{10 \text {-fold }}$ |  |
|  | , 6 -fold |
|  | ${ }^{2} \mathrm{D}_{5 / 2}$ |
| $s^{1} d^{10} \xrightarrow{\text { 2-fold }}$ |  |
| ${ }^{2} \mathrm{~S}$ | ${ }^{2} \mathrm{~S}$ |

$\longrightarrow \mathrm{Au}(25 \mathrm{e}, 150 \mathrm{o}):>10^{30}$, converged results with $10^{7}$

## Neptunyl(VI) dioxide $\mathrm{NpO}_{2}^{2+}$

- Insight into interesting complexes (Single Molecular Magnets)







Static and dynamical correlation typically have vastly different needs in term of ansätz for the WFT.

- static correlation typically needs high flexibility in many-body configuration space
- dynamical correlation needs a large set of virtual orbitals (the many-body structure can be simple).


This is generally challenging to reconcile.

In an MR calculation, the "out-of-active space" dynamical correlation is untreated, and can be added a posteriori.

## MRLCC (MR Linearized Coupled-Cluster)

- cheaper than $\mathrm{MRCI}+\mathrm{Q}$; at least as accurate
- independence to the orbitals (versus MRCI)
- intruder state free (versus CASPT)

The first-order correction to the WFT is expanded on a basis $\left\{\left|b_{l}\right\rangle\right\}$ :

$$
|1\rangle=\sum d_{1}\left|b_{1}\right\rangle
$$

where the coefficients $d_{l}$ are found by minimizing the Hylleraas functional:

$$
\begin{aligned}
& \left(E_{0}-\hat{H}_{0}\right)|1\rangle=\hat{V}|0\rangle \\
& \stackrel{\forall 1}{\Longleftrightarrow}\left\langle b_{l}\right|\left(E_{0}-\hat{H}_{0}\right)\left|b_{J}\right\rangle d_{J}=\left\langle b_{l}\right| \hat{V}|0\rangle
\end{aligned}
$$

Internal contraction:
the basis $\left\{\hat{E}_{I}|0\rangle\right\}$ is used:

$$
\begin{aligned}
& A_{I J}=\langle 0| \hat{E}_{l}^{\dagger}\left(E^{(0)}-\hat{H}_{0}\right) \hat{E}_{J}|0\rangle \\
& s_{I}=\langle 0| \hat{E}_{l}^{\dagger} \hat{E}_{J}|0\rangle w_{J}
\end{aligned}
$$

Normal-ordering $A_{I J}$ and $s_{l}$
$\longrightarrow$ Minimizer for $d$
yields $\sim 10^{3}$ lines of equations for $E_{2}$ and for $E_{3}$
$\longrightarrow$ Symbolic Algebra

Tensor contractions of integrals and RDMs up to fourth-order
integrals and RDMs up to fourth-order
$\longrightarrow$ Tensor Contraction engine

The coefficient are found by minimizaThe coefficient are found by mi
tion of the Hylleraas functional

## Properties of MRLCC

Basis dependance


Performance on $\mathrm{Cr}_{2}$

$\mathrm{C}_{2}$ PES


CASCI
reference
wavefunction


CASSCF reference wavefunction


## A benchmark study of transition metal oxides

is undergoing using various methods
(DFT, RPA, GF2, SEET, DMC, DMRG, AFQMC, ...).
The transition metal oxides involved are $\mathrm{ScO}, \mathrm{TiO}, \mathrm{VO}, \mathrm{CrO}, \mathrm{MnO}, \mathrm{FeO}, \mathrm{CuO}$.

The quantities at play are the energies of the neutral


 atoms, cations and monoxides, as well as ionization and dissociation energies.





## Dynamical correlation

## Sandeep Sharma's group

[website]


James E. T. Smith
Iliya Sabzevari
Ankit Mahajan
Chaoqu Zhang
Matt Mulligan
Xubo Wang

Cumulant approximations; Further optimization of tensor contraction; Calculations of Cupper oxides; Use of ML techniques that would forego the need of RDMs altogether.

## Embedding techniques

Use techniques like MC-pDFT
to tackle large systems of interest.

## Spin-orbit coupling

Four-component DCB Hamiltonian exactly; Quantitative calculations for realistic systems; Ab-initio parameters for model spinHamiltonian (analytical response theory).

## VMC

Use of ML minimizer to optimize large numbers of parameters of a very flexible wavefunction; Green Function VMC.

## https://sanshar.github.io/Dice/

## Dice is interfaced with PySCF, a widely-used ab initio computational chemistry program implemented in Python/ $C$ and available with pip

## Welcome to Dice's documentation!



Dice implements the semistochastic heat bath configuration interaction (SHCI) algorithm for ab initio Hamiltonian of a quantum chemical system. Unlike full configuration interaction ( FCl ), SHCl can be used to treat active spaces containing 30100 orbitals. SHCl is able to accomplish this by taking advantage of the fact that although the full Hilbert space may be enormous, only a small fraction of the determinants in the space have appreciable coefficients. Compared to other methods in its class SHCl is often not only orders of magnitude faster, it also does not suffer from a serious memory bottleneck that plauges such methods. The resulting algorithm as implemented in Dice allows us to treat difficult benchmark systems such as the Chromium dimer and Mn-Salen (a challenging bioinorganic cluster) at a cost that is often an order of magnitude faster than either density matrix renormalization group (DMRG) or full configuration interaction quantum Monte Carlo (FCIQMC). Thus if you are interested in performing multireference calculations with active space containing several tens to hundreds of orbitals, SHCI might be an ideal choice for you.

Contents:

- Overview
- Algorithm
- Features
- License and how to cite

Consider the first-order correction to the wavefunction:

$$
|1\rangle=\sum_{D_{a} \in \mathcal{C}} \frac{\sum_{D_{i} \in \mathcal{V}^{\mu}} H_{a i} c_{i}^{\mu}}{E_{0}-E_{a}}\left|D_{a}\right\rangle
$$

A good criteria to include a determinant into $\mathcal{V}$ is based on:

$$
f^{\mu}\left(\left|D_{a}\right\rangle\right)=\frac{\sum_{D_{i} \in \mathcal{V}^{\mu}} H_{a i} c_{i}^{\mu}}{E_{0}-E_{a}}
$$

We observe that:

- the denominator $E_{0}-E_{a}$ is fairly constant
- the numerator is dominated by $\max _{D_{i} \in \mathcal{V}^{\mu}}\left|H_{a i} c_{i}^{\mu}\right|$

The criteria can be safely approximated as:


$$
f^{\mu}\left(\left|D_{a}\right\rangle\right)=\max _{D_{i} \in \mathcal{V}^{\mu}}\left|H_{a i} c_{i}^{\mu}\right|
$$

The two criteria will pick the same determinants
$\left\{\left|D_{a}\right\rangle\left|\max _{D_{i} \in \mathcal{V}^{\mu}}\right| H_{a i} c_{i}^{\mu} \mid>\epsilon\right\}$
$\downarrow$
$\left\{\left|D_{a}\right\rangle\left|\exists D_{i} \in \mathcal{V}^{\mu} /\left|H_{a i}\right|>\epsilon /\left|c_{i}^{\mu}\right|\right\}\right.$
$\downarrow$
$\bigcup_{D_{i} \in \mathcal{V}^{\mu}}\left\{\left|\hat{E}_{p q}^{r s} D_{i}\right\rangle| | H_{p q}^{r s}\left|>\epsilon /\left|c_{i}^{\mu}\right|\right\}\right.$

We simply loop through dets. in $\mathcal{V}^{\mu}$ and generate for each all the excited dets. for which $H_{p q}^{r s}$ is above a $i$-dependant threshold.
$H_{a i}=\left\langle D_{a}\right| \hat{H}\left|D_{i}\right\rangle$ depends only on the orbitals that change between $D_{a}$ and $D_{i}$


